Assumptions:
TeX:
\theta_{3}\!\left(z , \frac{\tau}{2}\right) = \frac{\theta_{4}^{2}\!\left(z, \tau\right) - \theta_{1}^{2}\!\left(z, \tau\right)}{\theta_{4}\!\left(0 , \frac{\tau}{2}\right)}
z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| JacobiTheta | Jacobi theta function | |
| Pow | Power | |
| CC | Complex numbers | |
| HH | Upper complex half-plane |
Source code for this entry:
Entry(ID("e6d333"),
Formula(Equal(JacobiTheta(3, z, Div(tau, 2)), Div(Sub(Pow(JacobiTheta(4, z, tau), 2), Pow(JacobiTheta(1, z, tau), 2)), JacobiTheta(4, 0, Div(tau, 2))))),
Variables(z, tau),
Assumptions(And(Element(z, CC), Element(tau, HH))))