Fungrim home page

Fungrim entry: e51ec3

(ez)n=enz{\left({e}^{z}\right)}^{n} = {e}^{n z}
Assumptions:zC  and  nZz \in \mathbb{C} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}
TeX:
{\left({e}^{z}\right)}^{n} = {e}^{n z}

z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}
Definitions:
Fungrim symbol Notation Short description
Powab{a}^{b} Power
Expez{e}^{z} Exponential function
CCC\mathbb{C} Complex numbers
ZZZ\mathbb{Z} Integers
Source code for this entry:
Entry(ID("e51ec3"),
    Formula(Equal(Pow(Exp(z), n), Exp(Mul(n, z)))),
    Variables(z, n),
    Assumptions(And(Element(z, CC), Element(n, ZZ))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-04-08 16:14:44.404316 UTC