Fungrim home page

Fungrim entry: e4cdf1

0θ44 ⁣(0,it)1+t2dt=4log(2)π\int_{0}^{\infty} \frac{\theta_{4}^{4}\!\left(0, i t\right)}{1 + {t}^{2}} \, dt = \frac{4 \log(2)}{\pi}
References:
  • https://math.stackexchange.com/questions/1760270/closed-form-of-an-integral-involving-a-jacobi-theta-function-int-0-infty
TeX:
\int_{0}^{\infty} \frac{\theta_{4}^{4}\!\left(0, i t\right)}{1 + {t}^{2}} \, dt = \frac{4 \log(2)}{\pi}
Definitions:
Fungrim symbol Notation Short description
Integralabf(x)dx\int_{a}^{b} f(x) \, dx Integral
Powab{a}^{b} Power
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
ConstIii Imaginary unit
Infinity\infty Positive infinity
Loglog(z)\log(z) Natural logarithm
Piπ\pi The constant pi (3.14...)
Source code for this entry:
Entry(ID("e4cdf1"),
    Formula(Equal(Integral(Div(Pow(JacobiTheta(4, 0, Mul(ConstI, t)), 4), Add(1, Pow(t, 2))), For(t, 0, Infinity)), Div(Mul(4, Log(2)), Pi))),
    References("https://math.stackexchange.com/questions/1760270/closed-form-of-an-integral-involving-a-jacobi-theta-function-int-0-infty"))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC