This mapping is one-to-one.
References:
- J. M. Borwein and P. B. Borwein. Pi and the AGM. Wiley, New York, 1987. p. 118.
TeX:
\left\{ \lambda(\tau) : \tau \in \mathbb{H} \,\mathbin{\operatorname{and}}\, \left|\tau + \frac{1}{2}\right| = \frac{1}{2} \right\} = \left(1, \infty\right)Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| ModularLambda | Modular lambda function | |
| HH | Upper complex half-plane | |
| Abs | Absolute value | |
| OpenInterval | Open interval | |
| Infinity | Positive infinity |
Source code for this entry:
Entry(ID("e4315f"),
Formula(Equal(Set(ModularLambda(tau), ForElement(tau, HH), Equal(Abs(Add(tau, Div(1, 2))), Div(1, 2))), OpenInterval(1, Infinity))),
Description("This mapping is one-to-one."),
References("J. M. Borwein and P. B. Borwein. Pi and the AGM. Wiley, New York, 1987. p. 118."))