Fungrim home page

Fungrim entry: e3d274

atan ⁣(1z)=π2atan ⁣(z)\operatorname{atan}\!\left(\frac{1}{z}\right) = \frac{\pi}{2} - \operatorname{atan}\!\left(z\right)
Assumptions:zCand(Re ⁣(z)>0or(Re ⁣(z)=0andIm ⁣(z)(1,0)(1,)))z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left(\operatorname{Re}\!\left(z\right) > 0 \,\mathbin{\operatorname{or}}\, \left(\operatorname{Re}\!\left(z\right) = 0 \,\mathbin{\operatorname{and}}\, \operatorname{Im}\!\left(z\right) \in \left(-1, 0\right) \cup \left(1, \infty\right)\right)\right)
TeX:
\operatorname{atan}\!\left(\frac{1}{z}\right) = \frac{\pi}{2} - \operatorname{atan}\!\left(z\right)

z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left(\operatorname{Re}\!\left(z\right) > 0 \,\mathbin{\operatorname{or}}\, \left(\operatorname{Re}\!\left(z\right) = 0 \,\mathbin{\operatorname{and}}\, \operatorname{Im}\!\left(z\right) \in \left(-1, 0\right) \cup \left(1, \infty\right)\right)\right)
Definitions:
Fungrim symbol Notation Short description
Atanatan ⁣(z)\operatorname{atan}\!\left(z\right) Inverse tangent
ConstPiπ\pi The constant pi (3.14...)
CCC\mathbb{C} Complex numbers
ReRe ⁣(z)\operatorname{Re}\!\left(z\right) Real part
ImIm ⁣(z)\operatorname{Im}\!\left(z\right) Imaginary part
OpenInterval(a,b)\left(a, b\right) Open interval
Infinity\infty Positive infinity
Source code for this entry:
Entry(ID("e3d274"),
    Formula(Equal(Atan(Div(1, z)), Sub(Div(ConstPi, 2), Atan(z)))),
    Variables(z),
    Assumptions(And(Element(z, CC), Or(Greater(Re(z), 0), And(Equal(Re(z), 0), Element(Im(z), Union(OpenInterval(-1, 0), OpenInterval(1, Infinity))))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-09-16 21:17:18.797188 UTC