Fungrim home page

Fungrim entry: e37535

(121s)ζ ⁣(s)1d ⁣(n)k=0n1(1)k(d ⁣(n)d ⁣(k))(k+1)s3(1+2Im ⁣(s))(3+8)nexp ⁣(Im ⁣(s)π2)   where d ⁣(k)=ni=0k(n+i1)!4i(ni)!(2i)!\left|\left(1 - {2}^{1 - s}\right) \zeta\!\left(s\right) - \frac{1}{d\!\left(n\right)} \sum_{k=0}^{n - 1} \frac{{\left(-1\right)}^{k} \left(d\!\left(n\right) - d\!\left(k\right)\right)}{{\left(k + 1\right)}^{s}}\right| \le \frac{3 \left(1 + 2 \left|\operatorname{Im}\!\left(s\right)\right|\right)}{{\left(3 + \sqrt{8}\right)}^{n}} \exp\!\left(\frac{\left|\operatorname{Im}\!\left(s\right)\right| \pi}{2}\right)\; \text{ where } d\!\left(k\right) = n \sum_{i=0}^{k} \frac{\left(n + i - 1\right)! {4}^{i}}{\left(n - i\right)! \left(2 i\right)!}
Assumptions:sCandRe ⁣(s)12ands1andnZ1s \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{Re}\!\left(s\right) \ge \frac{1}{2} \,\mathbin{\operatorname{and}}\, s \ne 1 \,\mathbin{\operatorname{and}}\, n \in \mathbb{Z}_{\ge 1}
References:
  • P. Borwein. An efficient algorithm for the Riemann zeta function. Canadian Mathematical Society Conference Proceedings, vol. 27, pp. 29-34. 2000.
TeX:
\left|\left(1 - {2}^{1 - s}\right) \zeta\!\left(s\right) - \frac{1}{d\!\left(n\right)} \sum_{k=0}^{n - 1} \frac{{\left(-1\right)}^{k} \left(d\!\left(n\right) - d\!\left(k\right)\right)}{{\left(k + 1\right)}^{s}}\right| \le \frac{3 \left(1 + 2 \left|\operatorname{Im}\!\left(s\right)\right|\right)}{{\left(3 + \sqrt{8}\right)}^{n}} \exp\!\left(\frac{\left|\operatorname{Im}\!\left(s\right)\right| \pi}{2}\right)\; \text{ where } d\!\left(k\right) = n \sum_{i=0}^{k} \frac{\left(n + i - 1\right)! {4}^{i}}{\left(n - i\right)! \left(2 i\right)!}

s \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{Re}\!\left(s\right) \ge \frac{1}{2} \,\mathbin{\operatorname{and}}\, s \ne 1 \,\mathbin{\operatorname{and}}\, n \in \mathbb{Z}_{\ge 1}
Definitions:
Fungrim symbol Notation Short description
Absz\left|z\right| Absolute value
Powab{a}^{b} Power
RiemannZetaζ ⁣(s)\zeta\!\left(s\right) Riemann zeta function
Sumnf ⁣(n)\sum_{n} f\!\left(n\right) Sum
ImIm ⁣(z)\operatorname{Im}\!\left(z\right) Imaginary part
Sqrtz\sqrt{z} Principal square root
Expez{e}^{z} Exponential function
ConstPiπ\pi The constant pi (3.14...)
Factorialn!n ! Factorial
CCC\mathbb{C} Complex numbers
ReRe ⁣(z)\operatorname{Re}\!\left(z\right) Real part
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
Entry(ID("e37535"),
    Formula(Where(LessEqual(Abs(Sub(Mul(Sub(1, Pow(2, Sub(1, s))), RiemannZeta(s)), Mul(Div(1, d(n)), Sum(Div(Mul(Pow(-1, k), Sub(d(n), d(k))), Pow(Add(k, 1), s)), Tuple(k, 0, Sub(n, 1)))))), Mul(Div(Mul(3, Add(1, Mul(2, Abs(Im(s))))), Pow(Add(3, Sqrt(8)), n)), Exp(Div(Mul(Abs(Im(s)), ConstPi), 2)))), Equal(d(k), Mul(n, Sum(Div(Mul(Factorial(Sub(Add(n, i), 1)), Pow(4, i)), Mul(Factorial(Sub(n, i)), Factorial(Mul(2, i)))), Tuple(i, 0, k)))))),
    Variables(s, n),
    Assumptions(And(Element(s, CC), GreaterEqual(Re(s), Div(1, 2)), Unequal(s, 1), Element(n, ZZGreaterEqual(1)))),
    References("P. Borwein. An efficient algorithm for the Riemann zeta function. Canadian Mathematical Society Conference Proceedings, vol. 27, pp. 29-34. 2000."))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-08-21 11:44:15.926409 UTC