Fungrim home page

Fungrim entry: e352ca

xgcd ⁣(a,0)=(a,sgn(a),0)\operatorname{xgcd}\!\left(a, 0\right) = \left(\left|a\right|, \operatorname{sgn}(a), 0\right)
Assumptions:aZa \in \mathbb{Z}
TeX:
\operatorname{xgcd}\!\left(a, 0\right) = \left(\left|a\right|, \operatorname{sgn}(a), 0\right)

a \in \mathbb{Z}
Definitions:
Fungrim symbol Notation Short description
XGCDxgcd ⁣(a,b)\operatorname{xgcd}\!\left(a, b\right) Extended greatest common divisor
Absz\left|z\right| Absolute value
Signsgn(z)\operatorname{sgn}(z) Sign function
ZZZ\mathbb{Z} Integers
Source code for this entry:
Entry(ID("e352ca"),
    Formula(Equal(XGCD(a, 0), Tuple(Abs(a), Sign(a), 0))),
    Variables(a),
    Assumptions(Element(a, ZZ)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-11-11 15:50:15.016492 UTC