Fungrim home page

Fungrim entry: e08bb4

θ14 ⁣(z,τ)θ44 ⁣(z,τ)=θ24 ⁣(z,τ)θ34 ⁣(z,τ)\theta_{1}^{4}\!\left(z, \tau\right) - \theta_{4}^{4}\!\left(z, \tau\right) = \theta_{2}^{4}\!\left(z, \tau\right) - \theta_{3}^{4}\!\left(z, \tau\right)
Assumptions:zCandτHz \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H}
TeX:
\theta_{1}^{4}\!\left(z, \tau\right) - \theta_{4}^{4}\!\left(z, \tau\right) = \theta_{2}^{4}\!\left(z, \tau\right) - \theta_{3}^{4}\!\left(z, \tau\right)

z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H}
Definitions:
Fungrim symbol Notation Short description
Powab{a}^{b} Power
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
CCC\mathbb{C} Complex numbers
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
Entry(ID("e08bb4"),
    Formula(Equal(Sub(Pow(JacobiTheta(1, z, tau), 4), Pow(JacobiTheta(4, z, tau), 4)), Sub(Pow(JacobiTheta(2, z, tau), 4), Pow(JacobiTheta(3, z, tau), 4)))),
    Variables(z, tau),
    Assumptions(And(Element(z, CC), Element(tau, HH))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-09-22 15:43:45.410764 UTC