Fungrim home page

Fungrim entry: e03b7c

G4 ⁣(i)=(Γ ⁣(14))8960π2G_{4}\!\left(i\right) = \frac{{\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{8}}{960 {\pi}^{2}}
TeX:
G_{4}\!\left(i\right) = \frac{{\left(\Gamma\!\left(\frac{1}{4}\right)\right)}^{8}}{960 {\pi}^{2}}
Definitions:
Fungrim symbol Notation Short description
EisensteinGGk ⁣(τ)G_{k}\!\left(\tau\right) Eisenstein series
ConstIii Imaginary unit
Powab{a}^{b} Power
GammaFunctionΓ ⁣(z)\Gamma\!\left(z\right) Gamma function
ConstPiπ\pi The constant pi (3.14...)
Source code for this entry:
Entry(ID("e03b7c"),
    Formula(Equal(EisensteinG(4, ConstI), Div(Pow(GammaFunction(Div(1, 4)), 8), Mul(960, Pow(ConstPi, 2))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-09-20 18:07:53.062439 UTC