# Fungrim entry: dfb55b

$\psi^{(m)}\!\left(z\right) = {\left(-1\right)}^{m + 1} m ! \sum_{n=0}^{\infty} \frac{1}{{\left(n + z\right)}^{m + 1}}$
Assumptions:$m \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \{0, -1, \ldots\}$
TeX:
\psi^{(m)}\!\left(z\right) = {\left(-1\right)}^{m + 1} m ! \sum_{n=0}^{\infty} \frac{1}{{\left(n + z\right)}^{m + 1}}

m \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \notin \{0, -1, \ldots\}
Definitions:
Fungrim symbol Notation Short description
DigammaFunction$\psi\!\left(z\right)$ Digamma function
Pow${a}^{b}$ Power
Factorial$n !$ Factorial
Sum$\sum_{n} f(n)$ Sum
Infinity$\infty$ Positive infinity
ZZGreaterEqual$\mathbb{Z}_{\ge n}$ Integers greater than or equal to n
CC$\mathbb{C}$ Complex numbers
ZZLessEqual$\mathbb{Z}_{\le n}$ Integers less than or equal to n
Source code for this entry:
Entry(ID("dfb55b"),
Assumptions(And(Element(m, ZZGreaterEqual(1)), Element(z, CC), NotElement(z, ZZLessEqual(0)))))