# Fungrim entry: def37e

$\operatorname{HolomorphicDomain}\!\left(C \operatorname{Ai}\!\left(z\right) + D \operatorname{Bi}\!\left(z\right), z, \mathbb{C} \cup \left\{{\tilde \infty}\right\}\right) = \mathbb{C}$
Assumptions:$C \in \mathbb{C} \,\mathbin{\operatorname{and}}\, D \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{not} \left(C = 0 \,\mathbin{\operatorname{and}}\, D = 0\right)$
TeX:
\operatorname{HolomorphicDomain}\!\left(C \operatorname{Ai}\!\left(z\right) + D \operatorname{Bi}\!\left(z\right), z, \mathbb{C} \cup \left\{{\tilde \infty}\right\}\right) = \mathbb{C}

C \in \mathbb{C} \,\mathbin{\operatorname{and}}\, D \in \mathbb{C} \,\mathbin{\operatorname{and}}\,  \operatorname{not} \left(C = 0 \,\mathbin{\operatorname{and}}\, D = 0\right)
Definitions:
Fungrim symbol Notation Short description
AiryAi$\operatorname{Ai}\!\left(z\right)$ Airy function of the first kind
AiryBi$\operatorname{Bi}\!\left(z\right)$ Airy function of the second kind
CC$\mathbb{C}$ Complex numbers
UnsignedInfinity${\tilde \infty}$ Unsigned infinity
Source code for this entry:
Entry(ID("def37e"),
Formula(Equal(HolomorphicDomain(Add(Mul(C, AiryAi(z)), Mul(D, AiryBi(z))), z, Union(CC, Set(UnsignedInfinity))), CC)),
Variables(C, D),
Assumptions(And(Element(C, CC), Element(D, CC), Not(And(Equal(C, 0), Equal(D, 0))))))

## Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-08-21 11:44:15.926409 UTC