Fungrim home page

Fungrim entry: da2fdb

ζ(s)=k=11ks\zeta(s) = \sum_{k=1}^{\infty} \frac{1}{{k}^{s}}
Assumptions:sCandRe(s)>1s \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{Re}(s) > 1
TeX:
\zeta(s) = \sum_{k=1}^{\infty} \frac{1}{{k}^{s}}

s \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{Re}(s) > 1
Definitions:
Fungrim symbol Notation Short description
RiemannZetaζ(s)\zeta(s) Riemann zeta function
Sumnf(n)\sum_{n} f(n) Sum
Powab{a}^{b} Power
Infinity\infty Positive infinity
CCC\mathbb{C} Complex numbers
ReRe(z)\operatorname{Re}(z) Real part
Source code for this entry:
Entry(ID("da2fdb"),
    Formula(Equal(RiemannZeta(s), Sum(Div(1, Pow(k, s)), For(k, 1, Infinity)))),
    Variables(s),
    Assumptions(And(Element(s, CC), Greater(Re(s), 1))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-10-05 13:11:19.856591 UTC