Fungrim home page

Fungrim entry: da2fdb

ζ ⁣(s)=k=11ks\zeta\!\left(s\right) = \sum_{k=1}^{\infty} \frac{1}{{k}^{s}}
Assumptions:sCandRe ⁣(s)>1s \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{Re}\!\left(s\right) > 1
TeX:
\zeta\!\left(s\right) = \sum_{k=1}^{\infty} \frac{1}{{k}^{s}}

s \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{Re}\!\left(s\right) > 1
Definitions:
Fungrim symbol Notation Short description
RiemannZetaζ ⁣(s)\zeta\!\left(s\right) Riemann zeta function
Sumnf ⁣(n)\sum_{n} f\!\left(n\right) Sum
Powab{a}^{b} Power
Infinity\infty Positive infinity
CCC\mathbb{C} Complex numbers
ReRe ⁣(z)\operatorname{Re}\!\left(z\right) Real part
Source code for this entry:
Entry(ID("da2fdb"),
    Formula(Equal(RiemannZeta(s), Sum(Div(1, Pow(k, s)), Tuple(k, 1, Infinity)))),
    Variables(s),
    Assumptions(And(Element(s, CC), Greater(Re(s), 1))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-08-17 11:32:46.829430 UTC