Fungrim home page

Fungrim entry: d898b9

π(x)>xlog(x)\pi(x) > \frac{x}{\log(x)}
Assumptions:xR  and  x17x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; x \ge 17
TeX:
\pi(x) > \frac{x}{\log(x)}

x \in \mathbb{R} \;\mathbin{\operatorname{and}}\; x \ge 17
Definitions:
Fungrim symbol Notation Short description
PrimePiπ(x)\pi(x) Prime counting function
Loglog(z)\log(z) Natural logarithm
RRR\mathbb{R} Real numbers
Source code for this entry:
Entry(ID("d898b9"),
    Formula(Greater(PrimePi(x), Div(x, Log(x)))),
    Variables(x),
    Assumptions(And(Element(x, RR), GreaterEqual(x, 17))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-04-08 16:14:44.404316 UTC