Fungrim home page

Fungrim entry: d87f6e

elog(z)=z{e}^{\log(z)} = z
Assumptions:zC{0}z \in \mathbb{C} \setminus \left\{0\right\}
TeX:
{e}^{\log(z)} = z

z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol Notation Short description
Expez{e}^{z} Exponential function
Loglog(z)\log(z) Natural logarithm
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("d87f6e"),
    Formula(Equal(Exp(Log(z)), z)),
    Variables(z),
    Assumptions(Element(z, SetMinus(CC, Set(0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-12-30 15:00:46.909060 UTC