Fungrim home page

Fungrim entry: d8791e

z2=z\sqrt{{z}^{2}} = z
Assumptions:zCandarg ⁣(z)(π2,π2]z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \arg\!\left(z\right) \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right]
\sqrt{{z}^{2}} = z

z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \arg\!\left(z\right) \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right]
Fungrim symbol Notation Short description
Sqrtz\sqrt{z} Principal square root
Powab{a}^{b} Power
CCC\mathbb{C} Complex numbers
Argarg ⁣(z)\arg\!\left(z\right) Complex argument
OpenClosedInterval(a,b]\left(a, b\right] Open-closed interval
ConstPiπ\pi The constant pi (3.14...)
Source code for this entry:
    Formula(Equal(Sqrt(Pow(z, 2)), z)),
    Assumptions(And(Element(z, CC), Element(Arg(z), OpenClosedInterval(Div(Neg(ConstPi), 2), Div(ConstPi, 2))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-08-21 11:44:15.926409 UTC