Fungrim home page

Fungrim entry: d7962e

H={τ:τCandIm ⁣(τ)>0}\mathbb{H} = \left\{ \tau : \tau \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{Im}\!\left(\tau\right) > 0 \right\}
\mathbb{H} = \left\{ \tau : \tau \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{Im}\!\left(\tau\right) > 0 \right\}
Fungrim symbol Notation Short description
HHH\mathbb{H} Upper complex half-plane
SetBuilder{f ⁣(x):P ⁣(x)}\left\{ f\!\left(x\right) : P\!\left(x\right) \right\} Set comprehension
CCC\mathbb{C} Complex numbers
ImIm ⁣(z)\operatorname{Im}\!\left(z\right) Imaginary part
Source code for this entry:
    Formula(Equal(HH, SetBuilder(tau, tau, And(Element(tau, CC), Greater(Im(tau), 0))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-08-17 11:32:46.829430 UTC