# Fungrim entry: d56914

$J_{\nu}\!\left(z\right) = \frac{z}{2 \nu} \left(J_{\nu - 1}\!\left(z\right) + J_{\nu + 1}\!\left(z\right)\right)$
Assumptions:$\nu \in \mathbb{Z} \setminus \left\{0\right\} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}$
Alternative assumptions:$\nu \in \mathbb{C} \setminus \left\{0\right\} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\}$
TeX:
J_{\nu}\!\left(z\right) = \frac{z}{2 \nu} \left(J_{\nu - 1}\!\left(z\right) + J_{\nu + 1}\!\left(z\right)\right)

\nu \in \mathbb{Z} \setminus \left\{0\right\} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}

\nu \in \mathbb{C} \setminus \left\{0\right\} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol Notation Short description
BesselJ$J_{\nu}\!\left(z\right)$ Bessel function of the first kind
ZZ$\mathbb{Z}$ Integers
CC$\mathbb{C}$ Complex numbers
Source code for this entry:
Entry(ID("d56914"),
Assumptions(And(Element(nu, SetMinus(ZZ, Set(0))), Element(z, CC)), And(Element(nu, SetMinus(CC, Set(0))), Element(z, SetMinus(CC, Set(0))))))