Fungrim home page

Fungrim entry: d56025

limnFn+mFn=φm\lim_{n \to \infty} \frac{F_{n + m}}{F_{n}} = {\varphi}^{m}
Assumptions:mZm \in \mathbb{Z}
\lim_{n \to \infty} \frac{F_{n + m}}{F_{n}} = {\varphi}^{m}

m \in \mathbb{Z}
Fungrim symbol Notation Short description
SequenceLimitlimnaf ⁣(n)\lim_{n \to a} f\!\left(n\right) Limiting value of sequence
FibonacciFnF_{n} Fibonacci number
Infinity\infty Positive infinity
Powab{a}^{b} Power
GoldenRatioφ\varphi The golden ratio (1.618...)
ZZZ\mathbb{Z} Integers
Source code for this entry:
    Formula(Equal(SequenceLimit(Div(Fibonacci(Add(n, m)), Fibonacci(n)), Var(n), Infinity), Pow(GoldenRatio, m))),
    Assumptions(Element(m, ZZ)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-09-20 18:07:53.062439 UTC