# Fungrim entry: d1cf0c

$\operatorname{ClosedDisk}\!\left(z, r\right) = \left\{ t : t \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left|z - t\right| \le r \right\}$
Assumptions:$z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, r \in \mathbb{R} \,\mathbin{\operatorname{and}}\, r \ge 0$
TeX:
\operatorname{ClosedDisk}\!\left(z, r\right) = \left\{ t : t \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left|z - t\right| \le r \right\}

z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, r \in \mathbb{R} \,\mathbin{\operatorname{and}}\, r \ge 0
Definitions:
Fungrim symbol Notation Short description
CC$\mathbb{C}$ Complex numbers
Abs$\left|z\right|$ Absolute value
RR$\mathbb{R}$ Real numbers
Source code for this entry:
Entry(ID("d1cf0c"),
Formula(Equal(ClosedDisk(z, r), Set(t, ForElement(t, CC), LessEqual(Abs(Sub(z, t)), r)))),
Variables(z, r),
Assumptions(And(Element(z, CC), Element(r, RR), GreaterEqual(r, 0))))

## Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-01-31 18:09:28.494564 UTC