Fungrim home page

Fungrim entry: d10873

(1)n+1B2n+2>0{\left(-1\right)}^{n + 1} B_{2 n + 2} > 0
Assumptions:nZ0n \in \mathbb{Z}_{\ge 0}
{\left(-1\right)}^{n + 1} B_{2 n + 2} > 0

n \in \mathbb{Z}_{\ge 0}
Fungrim symbol Notation Short description
Powab{a}^{b} Power
BernoulliBBnB_{n} Bernoulli number
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
    Formula(Greater(Mul(Pow(-1, Add(n, 1)), BernoulliB(Add(Mul(2, n), 2))), 0)),
    Assumptions(Element(n, ZZGreaterEqual(0))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-11-11 15:50:15.016492 UTC