Fungrim home page

Fungrim entry: d0dfba

θ2 ⁣(z,τ+n)=eπin/4θ2 ⁣(z,τ)\theta_{2}\!\left(z , \tau + n\right) = {e}^{\pi i n / 4} \theta_{2}\!\left(z , \tau\right)
Assumptions:zCandτHandnZz \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H} \,\mathbin{\operatorname{and}}\, n \in \mathbb{Z}
\theta_{2}\!\left(z , \tau + n\right) = {e}^{\pi i n / 4} \theta_{2}\!\left(z , \tau\right)

z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H} \,\mathbin{\operatorname{and}}\, n \in \mathbb{Z}
Fungrim symbol Notation Short description
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
Expez{e}^{z} Exponential function
ConstPiπ\pi The constant pi (3.14...)
ConstIii Imaginary unit
CCC\mathbb{C} Complex numbers
HHH\mathbb{H} Upper complex half-plane
ZZZ\mathbb{Z} Integers
Source code for this entry:
    Formula(Equal(JacobiTheta(2, z, Add(tau, n)), Mul(Exp(Div(Mul(Mul(ConstPi, ConstI), n), 4)), JacobiTheta(2, z, tau)))),
    Variables(z, tau, n),
    Assumptions(And(Element(z, CC), Element(tau, HH), Element(n, ZZ))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-09-19 20:12:49.583742 UTC