Fungrim home page

Fungrim entry: d0a331

1z=1z\sqrt{\frac{1}{z}} = \frac{1}{\sqrt{z}}
Assumptions:zC(,0]z \in \mathbb{C} \setminus \left(-\infty, 0\right]
TeX:
\sqrt{\frac{1}{z}} = \frac{1}{\sqrt{z}}

z \in \mathbb{C} \setminus \left(-\infty, 0\right]
Definitions:
Fungrim symbol Notation Short description
Sqrtz\sqrt{z} Principal square root
CCC\mathbb{C} Complex numbers
OpenClosedInterval(a,b]\left(a, b\right] Open-closed interval
Infinity\infty Positive infinity
Source code for this entry:
Entry(ID("d0a331"),
    Formula(Equal(Sqrt(Div(1, z)), Div(1, Sqrt(z)))),
    Variables(z),
    Assumptions(Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-11-19 15:10:20.037976 UTC