Assumptions:
TeX:
\psi\!\left(z\right) = \log(z) - \frac{1}{2 z} - \sum_{n=1}^{N - 1} \frac{B_{2 n}}{2 n {z}^{2 n}} + R'_{N}(z)
z \in \mathbb{C} \setminus \left(-\infty, 0\right] \;\mathbin{\operatorname{and}}\; N \in \mathbb{Z}_{\ge 0}Definitions:
| Fungrim symbol | Notation | Short description |
|---|---|---|
| DigammaFunction | Digamma function | |
| Log | Natural logarithm | |
| Sum | Sum | |
| BernoulliB | Bernoulli number | |
| Pow | Power | |
| Derivative | Derivative | |
| StirlingSeriesRemainder | Remainder term in the Stirling series for the logarithmic gamma function | |
| CC | Complex numbers | |
| OpenClosedInterval | Open-closed interval | |
| Infinity | Positive infinity | |
| ZZGreaterEqual | Integers greater than or equal to n |
Source code for this entry:
Entry(ID("cf5355"),
Formula(Equal(DigammaFunction(z), Add(Sub(Sub(Log(z), Div(1, Mul(2, z))), Sum(Div(BernoulliB(Mul(2, n)), Mul(Mul(2, n), Pow(z, Mul(2, n)))), For(n, 1, Sub(N, 1)))), Derivative(StirlingSeriesRemainder(N, z), For(z, z))))),
Variables(z, N),
Assumptions(And(Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0))), Element(N, ZZGreaterEqual(0)))))