Fungrim home page

Fungrim entry: ce6dd0

Fn=(1)n+1FnF_{-n} = {\left(-1\right)}^{n + 1} F_{n}
Assumptions:nZn \in \mathbb{Z}
TeX:
F_{-n} = {\left(-1\right)}^{n + 1} F_{n}

n \in \mathbb{Z}
Definitions:
Fungrim symbol Notation Short description
FibonacciFnF_{n} Fibonacci number
Powab{a}^{b} Power
ZZZ\mathbb{Z} Integers
Source code for this entry:
Entry(ID("ce6dd0"),
    Formula(Equal(Fibonacci(Neg(n)), Mul(Pow(-1, Add(n, 1)), Fibonacci(n)))),
    Variables(n),
    Assumptions(Element(n, ZZ)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-10-05 13:11:19.856591 UTC