Fungrim home page

Fungrim entry: cdd7e7

dnφ(d)=n\sum_{d \mid n} \varphi(d) = n
Assumptions:nZ0n \in \mathbb{Z}_{\ge 0}
TeX:
\sum_{d \mid n} \varphi(d) = n

n \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol Notation Short description
DivisorSumknf(k)\sum_{k \mid n} f(k) Sum over divisors
Totientφ(n)\varphi(n) Euler totient function
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
Entry(ID("cdd7e7"),
    Formula(Equal(DivisorSum(Totient(d), For(d, n)), n)),
    Variables(n),
    Assumptions(Element(n, ZZGreaterEqual(0))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-10-05 13:11:19.856591 UTC