Fungrim home page

Fungrim entry: c93b81

absin ⁣(z)dz=cos ⁣(a)cos ⁣(b)\int_{a}^{b} \sin\!\left(z\right) \, dz = \cos\!\left(a\right) - \cos\!\left(b\right)
Assumptions:aCandbCa \in \mathbb{C} \,\mathbin{\operatorname{and}}\, b \in \mathbb{C}
\int_{a}^{b} \sin\!\left(z\right) \, dz = \cos\!\left(a\right) - \cos\!\left(b\right)

a \in \mathbb{C} \,\mathbin{\operatorname{and}}\, b \in \mathbb{C}
Fungrim symbol Notation Short description
Integralabf ⁣(x)dx\int_{a}^{b} f\!\left(x\right) \, dx Integral
Sinsin ⁣(z)\sin\!\left(z\right) Sine
CCC\mathbb{C} Complex numbers
Source code for this entry:
    Formula(Equal(Integral(Sin(z), Tuple(z, a, b)), Sub(Cos(a), Cos(b)))),
    Variables(a, b),
    Assumptions(And(Element(a, CC), Element(b, CC))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-08-21 11:44:15.926409 UTC