Fungrim home page

# Fungrim entry: c92a6f

$\theta_{4}\!\left(z , \frac{\tau}{2}\right) = \frac{\theta_{4}^{2}\!\left(z, \tau\right) + \theta_{1}^{2}\!\left(z, \tau\right)}{\theta_{3}\!\left(0 , \frac{\tau}{2}\right)}$
Assumptions:$z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H}$
TeX:
\theta_{4}\!\left(z , \frac{\tau}{2}\right) = \frac{\theta_{4}^{2}\!\left(z, \tau\right) + \theta_{1}^{2}\!\left(z, \tau\right)}{\theta_{3}\!\left(0 , \frac{\tau}{2}\right)}

z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H}
Definitions:
Fungrim symbol Notation Short description
JacobiTheta$\theta_{j}\!\left(z , \tau\right)$ Jacobi theta function
Pow${a}^{b}$ Power
CC$\mathbb{C}$ Complex numbers
HH$\mathbb{H}$ Upper complex half-plane
Source code for this entry:
Entry(ID("c92a6f"),
Formula(Equal(JacobiTheta(4, z, Div(tau, 2)), Div(Add(Pow(JacobiTheta(4, z, tau), 2), Pow(JacobiTheta(1, z, tau), 2)), JacobiTheta(3, 0, Div(tau, 2))))),
Variables(z, tau),
Assumptions(And(Element(z, CC), Element(tau, HH))))

## Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-01-31 18:09:28.494564 UTC