# Fungrim entry: c77f9a

$\int \frac{1}{z} \, dz = \log\!\left(z\right) + \mathcal{C}$
Assumptions:$z \in \mathbb{C} \setminus \left(-\infty, 0\right]$
TeX:
\int \frac{1}{z} \, dz = \log\!\left(z\right) + \mathcal{C}

z \in \mathbb{C} \setminus \left(-\infty, 0\right]
Definitions:
Fungrim symbol Notation Short description
ComplexIndefiniteIntegralEqual$\int f\!\left(x\right) \, dx = g\!\left(x\right) + \mathcal{C}$ Indefinite integral, complex derivative
Log$\log\!\left(z\right)$ Natural logarithm
CC$\mathbb{C}$ Complex numbers
OpenClosedInterval$\left(a, b\right]$ Open-closed interval
Infinity$\infty$ Positive infinity
Source code for this entry:
Entry(ID("c77f9a"),
Formula(ComplexIndefiniteIntegralEqual(Div(1, z), Log(z), z)),
Variables(z),
Assumptions(Element(z, SetMinus(CC, OpenClosedInterval(Neg(Infinity), 0)))))

## Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-09-15 11:00:55.020619 UTC