Fungrim home page

# Fungrim entry: c6234b

$\mathop{\operatorname{zeros}\,}\limits_{z \in \mathbb{C}} \wp\!\left(z, i\right) = \left\{ \left(m + \frac{1}{2}\right) + \left(n + \frac{1}{2}\right) i : m \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, n \in \mathbb{Z} \right\}$
TeX:
\mathop{\operatorname{zeros}\,}\limits_{z \in \mathbb{C}} \wp\!\left(z, i\right) = \left\{ \left(m + \frac{1}{2}\right) + \left(n + \frac{1}{2}\right) i : m \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, n \in \mathbb{Z} \right\}
Definitions:
Fungrim symbol Notation Short description
Zeros$\mathop{\operatorname{zeros}\,}\limits_{x \in S} f(x)$ Zeros (roots) of function
WeierstrassP$\wp\!\left(z, \tau\right)$ Weierstrass elliptic function
ConstI$i$ Imaginary unit
CC$\mathbb{C}$ Complex numbers
ZZ$\mathbb{Z}$ Integers
Source code for this entry:
Entry(ID("c6234b"),
Formula(Equal(Zeros(WeierstrassP(z, ConstI), ForElement(z, CC)), Set(Add(Parentheses(Add(m, Div(1, 2))), Mul(Add(n, Div(1, 2)), ConstI)), For(Tuple(m, n)), And(Element(m, ZZ), Element(n, ZZ))))))

## Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-01-31 18:09:28.494564 UTC