Fungrim home page

Fungrim entry: c33e2b

(B2n(p1)2n1p)Z\left(B_{2 n} \prod_{\left(p - 1\right) \mid 2 n} \frac{1}{p}\right) \in \mathbb{Z}
Assumptions:nZ1n \in \mathbb{Z}_{\ge 1}
\left(B_{2 n} \prod_{\left(p - 1\right) \mid 2 n} \frac{1}{p}\right) \in \mathbb{Z}

n \in \mathbb{Z}_{\ge 1}
Fungrim symbol Notation Short description
BernoulliBBnB_{n} Bernoulli number
Productnf ⁣(n)\prod_{n} f\!\left(n\right) Product
ZZZ\mathbb{Z} Integers
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
    Formula(Element(Parentheses(Mul(BernoulliB(Mul(2, n)), Product(Div(1, p), p, Divides(Parentheses(Sub(p, 1)), Mul(2, n))))), ZZ)),
    Assumptions(Element(n, ZZGreaterEqual(1))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-08-25 15:30:03.056001 UTC