Assumptions:
TeX:
\mathop{\text{Continuation}}\limits_{\displaystyle{z: a \rightsquigarrow b}} \, \log(z) = \log\!\left(-b\right) - \pi i
a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Im}(a) < 0 \;\mathbin{\operatorname{and}}\; \operatorname{Im}(b) > 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(a) \operatorname{Im}(b) - \operatorname{Re}(b) \operatorname{Im}(a) < 0Definitions:
| Fungrim symbol | Notation | Short description | 
|---|---|---|
| AnalyticContinuation | Analytic continuation | |
| Log | Natural logarithm | |
| Pi | The constant pi (3.14...) | |
| ConstI | Imaginary unit | |
| CC | Complex numbers | |
| Im | Imaginary part | |
| Re | Real part | 
Source code for this entry:
Entry(ID("c1bee1"),
    Formula(Equal(AnalyticContinuation(Log(z), For(z, a, b)), Sub(Log(Neg(b)), Mul(Pi, ConstI)))),
    Variables(a, b),
    Assumptions(And(Element(a, CC), Element(b, CC), Less(Im(a), 0), Greater(Im(b), 0), Less(Sub(Mul(Re(a), Im(b)), Mul(Re(b), Im(a))), 0))))