Fungrim home page

Fungrim entry: be9a45

Un ⁣(1)=(1)n(n+1)U_{n}\!\left(-1\right) = {\left(-1\right)}^{n} \left(n + 1\right)
Assumptions:nZn \in \mathbb{Z}
TeX:
U_{n}\!\left(-1\right) = {\left(-1\right)}^{n} \left(n + 1\right)

n \in \mathbb{Z}
Definitions:
Fungrim symbol Notation Short description
ChebyshevUUn ⁣(x)U_{n}\!\left(x\right) Chebyshev polynomial of the second kind
Powab{a}^{b} Power
ZZZ\mathbb{Z} Integers
Source code for this entry:
Entry(ID("be9a45"),
    Formula(Equal(ChebyshevU(n, -1), Mul(Pow(-1, n), Add(n, 1)))),
    Variables(n),
    Assumptions(Element(n, ZZ)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-09-22 15:43:45.410764 UTC