Fungrim home page

Fungrim entry: be9790

zero*y(0,)E2 ⁣(12+iy)[0.130919030396762446904114826020±2.871031]\mathop{\operatorname{zero*}\,}\limits_{y \in \left(0, \infty\right)} E_{2}\!\left(-\frac{1}{2} + i y\right) \in \left[0.130919030396762446904114826020 \pm 2.87 \cdot 10^{-31}\right]
TeX:
\mathop{\operatorname{zero*}\,}\limits_{y \in \left(0, \infty\right)} E_{2}\!\left(-\frac{1}{2} + i y\right) \in \left[0.130919030396762446904114826020 \pm 2.87 \cdot 10^{-31}\right]
Definitions:
Fungrim symbol Notation Short description
UniqueZerozero*P(x)f ⁣(x)\mathop{\operatorname{zero*}\,}\limits_{P\left(x\right)} f\!\left(x\right) Unique zero (root) of function
EisensteinEEk ⁣(τ)E_{k}\!\left(\tau\right) Normalized Eisenstein series
ConstIii Imaginary unit
OpenInterval(a,b)\left(a, b\right) Open interval
Infinity\infty Positive infinity
Source code for this entry:
Entry(ID("be9790"),
    Formula(Element(UniqueZero(EisensteinE(2, Add(Neg(Div(1, 2)), Mul(ConstI, y))), Var(y), Element(y, OpenInterval(0, Infinity))), RealBall(Decimal("0.130919030396762446904114826020"), Decimal("2.87e-31")))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-09-19 20:12:49.583742 UTC