Fungrim home page

Fungrim entry: bbfb6c

λ ⁣(τ+1)=λ ⁣(τ)λ ⁣(τ)1\lambda\!\left(\tau + 1\right) = \frac{\lambda\!\left(\tau\right)}{\lambda\!\left(\tau\right) - 1}
Assumptions:τH\tau \in \mathbb{H}
TeX:
\lambda\!\left(\tau + 1\right) = \frac{\lambda\!\left(\tau\right)}{\lambda\!\left(\tau\right) - 1}

\tau \in \mathbb{H}
Definitions:
Fungrim symbol Notation Short description
ModularLambdaλ ⁣(τ)\lambda\!\left(\tau\right) Modular lambda function
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
Entry(ID("bbfb6c"),
    Formula(Equal(ModularLambda(Add(tau, 1)), Div(ModularLambda(tau), Sub(ModularLambda(tau), 1)))),
    Variables(tau),
    Assumptions(Element(tau, HH)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-09-15 11:00:55.020619 UTC