Fungrim home page

Fungrim entry: b978f0

θ1 ⁣(z,τ+2n)=inθ1 ⁣(z,τ)\theta_{1}\!\left(z , \tau + 2 n\right) = {i}^{n} \theta_{1}\!\left(z , \tau\right)
Assumptions:zCandτHandnZz \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H} \,\mathbin{\operatorname{and}}\, n \in \mathbb{Z}
\theta_{1}\!\left(z , \tau + 2 n\right) = {i}^{n} \theta_{1}\!\left(z , \tau\right)

z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H} \,\mathbin{\operatorname{and}}\, n \in \mathbb{Z}
Fungrim symbol Notation Short description
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
Powab{a}^{b} Power
ConstIii Imaginary unit
CCC\mathbb{C} Complex numbers
HHH\mathbb{H} Upper complex half-plane
ZZZ\mathbb{Z} Integers
Source code for this entry:
    Formula(Equal(JacobiTheta(1, z, Add(tau, Mul(2, n))), Mul(Pow(ConstI, n), JacobiTheta(1, z, tau)))),
    Variables(z, tau, n),
    Assumptions(And(Element(z, CC), Element(tau, HH), Element(n, ZZ))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-01-31 18:09:28.494564 UTC