# Fungrim entry: b88f65

$\operatorname{BranchPoints}\!\left(C \operatorname{Ai}\!\left(z\right) + D \operatorname{Bi}\!\left(z\right), z, \mathbb{C} \cup \left\{{\tilde \infty}\right\}\right) = \left\{\right\}$
Assumptions:$C \in \mathbb{C} \;\mathbin{\operatorname{and}}\; D \in \mathbb{C}$
TeX:
\operatorname{BranchPoints}\!\left(C \operatorname{Ai}\!\left(z\right) + D \operatorname{Bi}\!\left(z\right), z, \mathbb{C} \cup \left\{{\tilde \infty}\right\}\right) = \left\{\right\}

C \in \mathbb{C} \;\mathbin{\operatorname{and}}\; D \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
AiryAi$\operatorname{Ai}\!\left(z\right)$ Airy function of the first kind
AiryBi$\operatorname{Bi}\!\left(z\right)$ Airy function of the second kind
CC$\mathbb{C}$ Complex numbers
UnsignedInfinity${\tilde \infty}$ Unsigned infinity
Source code for this entry:
Entry(ID("b88f65"),
Formula(Equal(BranchPoints(Add(Mul(C, AiryAi(z)), Mul(D, AiryBi(z))), z, Union(CC, Set(UnsignedInfinity))), Set())),
Variables(C, D),
Assumptions(And(Element(C, CC), Element(D, CC))))

## Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-08-27 09:56:25.682319 UTC