Fungrim home page

Fungrim entry: b7d62b

Re ⁣(ez)=exp ⁣(Re ⁣(z))cos ⁣(Im ⁣(z))\operatorname{Re}\!\left({e}^{z}\right) = \exp\!\left(\operatorname{Re}\!\left(z\right)\right) \cos\!\left(\operatorname{Im}\!\left(z\right)\right)
Assumptions:zCz \in \mathbb{C}
TeX:
\operatorname{Re}\!\left({e}^{z}\right) = \exp\!\left(\operatorname{Re}\!\left(z\right)\right) \cos\!\left(\operatorname{Im}\!\left(z\right)\right)

z \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
ReRe ⁣(z)\operatorname{Re}\!\left(z\right) Real part
Expez{e}^{z} Exponential function
ImIm ⁣(z)\operatorname{Im}\!\left(z\right) Imaginary part
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("b7d62b"),
    Formula(Equal(Re(Exp(z)), Mul(Exp(Re(z)), Cos(Im(z))))),
    Variables(z),
    Assumptions(Element(z, CC)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-08-21 11:44:15.926409 UTC