# Fungrim entry: b788a1

$\Lambda\!\left(s, \chi\right) = \beta {\left(\frac{q}{\pi}\right)}^{\left( s + a \right) / 2} \Gamma\!\left(\frac{s + a}{2}\right) L\!\left(s, \chi\right)\; \text{ where } a = \frac{1 - \chi\!\left(-1\right)}{2},\,\beta = \begin{cases} s \left(s - 1\right), & q = 1\\1, & \text{otherwise}\\ \end{cases}$
Assumptions:$q \in \mathbb{Z}_{\ge 1} \,\mathbin{\operatorname{and}}\, \chi \in G_{q}^{\text{primitive}} \,\mathbin{\operatorname{and}}\, s \in \mathbb{C} \,\mathbin{\operatorname{and}}\, s \notin \begin{cases} \left\{ -2 n : n \in \mathbb{Z}_{\ge 0} \right\}, & \chi\!\left(-1\right) = 1\\\left\{ -2 n - 1 : n \in \mathbb{Z}_{\ge 0} \right\}, & \chi\!\left(-1\right) = -1\\ \end{cases} \,\mathbin{\operatorname{and}}\, \operatorname{not} \left(q = 1 \,\mathbin{\operatorname{and}}\, s = 1\right)$
TeX:
\Lambda\!\left(s, \chi\right) = \beta {\left(\frac{q}{\pi}\right)}^{\left( s + a \right) / 2} \Gamma\!\left(\frac{s + a}{2}\right) L\!\left(s, \chi\right)\; \text{ where } a = \frac{1 - \chi\!\left(-1\right)}{2},\,\beta = \begin{cases} s \left(s - 1\right), & q = 1\\1, & \text{otherwise}\\ \end{cases}

q \in \mathbb{Z}_{\ge 1} \,\mathbin{\operatorname{and}}\, \chi \in G_{q}^{\text{primitive}} \,\mathbin{\operatorname{and}}\, s \in \mathbb{C} \,\mathbin{\operatorname{and}}\, s \notin \begin{cases} \left\{ -2 n : n \in \mathbb{Z}_{\ge 0} \right\}, & \chi\!\left(-1\right) = 1\\\left\{ -2 n - 1 : n \in \mathbb{Z}_{\ge 0} \right\}, & \chi\!\left(-1\right) = -1\\ \end{cases} \,\mathbin{\operatorname{and}}\,  \operatorname{not} \left(q = 1 \,\mathbin{\operatorname{and}}\, s = 1\right)
Definitions:
Fungrim symbol Notation Short description
DirichletLambda$\Lambda\!\left(s, \chi\right)$ Completed Dirichlet L-function
Pow${a}^{b}$ Power
ConstPi$\pi$ The constant pi (3.14...)
GammaFunction$\Gamma\!\left(z\right)$ Gamma function
DirichletL$L\!\left(s, \chi\right)$ Dirichlet L-function
ZZGreaterEqual$\mathbb{Z}_{\ge n}$ Integers greater than or equal to n
PrimitiveDirichletCharacters$G_{q}^{\text{primitive}}$ Primitive Dirichlet characters with given modulus
CC$\mathbb{C}$ Complex numbers
SetBuilder$\left\{ f\!\left(x\right) : P\!\left(x\right) \right\}$ Set comprehension
Source code for this entry:
Entry(ID("b788a1"),
Formula(Equal(DirichletLambda(s, chi), Where(Mul(Mul(Mul(beta, Pow(Div(q, ConstPi), Div(Add(s, a), 2))), GammaFunction(Div(Add(s, a), 2))), DirichletL(s, chi)), Equal(a, Div(Sub(1, chi(-1)), 2)), Equal(beta, Cases(Tuple(Mul(s, Sub(s, 1)), Equal(q, 1)), Tuple(1, Otherwise)))))),
Variables(q, chi, s),
Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, PrimitiveDirichletCharacters(q)), Element(s, CC), NotElement(s, Cases(Tuple(SetBuilder(Neg(Mul(2, n)), n, Element(n, ZZGreaterEqual(0))), Equal(chi(-1), 1)), Tuple(SetBuilder(Sub(Neg(Mul(2, n)), 1), n, Element(n, ZZGreaterEqual(0))), Equal(chi(-1), -1)))), Not(And(Equal(q, 1), Equal(s, 1))))))

## Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-08-17 11:32:46.829430 UTC