Fungrim home page

Fungrim entry: b5bd5d

erf(z)=2πez2\operatorname{erf}'(z) = \frac{2}{\sqrt{\pi}} {e}^{-{z}^{2}}
Assumptions:zCz \in \mathbb{C}
TeX:
\operatorname{erf}'(z) = \frac{2}{\sqrt{\pi}} {e}^{-{z}^{2}}

z \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
Derivativeddzf ⁣(z)\frac{d}{d z}\, f\!\left(z\right) Derivative
Erferf ⁣(z)\operatorname{erf}\!\left(z\right) Error function
Sqrtz\sqrt{z} Principal square root
ConstPiπ\pi The constant pi (3.14...)
Expez{e}^{z} Exponential function
Powab{a}^{b} Power
CCC\mathbb{C} Complex numbers
Source code for this entry:
Entry(ID("b5bd5d"),
    Formula(Equal(Derivative(Erf(z), Tuple(z, z, 1)), Mul(Div(2, Sqrt(ConstPi)), Exp(Neg(Pow(z, 2)))))),
    Variables(z),
    Assumptions(Element(z, CC)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-09-15 14:14:26.267625 UTC