Fungrim home page

Fungrim entry: b14da0

z+x=zk=0(1)k(12)kzkk!xk\sqrt{z + x} = \sqrt{z} \sum_{k=0}^{\infty} \frac{{\left(-1\right)}^{k} \left(-\frac{1}{2}\right)_{k}}{{z}^{k} k !} {x}^{k}
Assumptions:zC{0}andxCand(x<zand(Re ⁣(z)>0orsgn ⁣(Im ⁣(x))=sgn ⁣(Im ⁣(z))))z \in \mathbb{C} \setminus \left\{0\right\} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left(\left|x\right| < \left|z\right| \,\mathbin{\operatorname{and}}\, \left(\operatorname{Re}\!\left(z\right) > 0 \,\mathbin{\operatorname{or}}\, \operatorname{sgn}\!\left(\operatorname{Im}\!\left(x\right)\right) = \operatorname{sgn}\!\left(\operatorname{Im}\!\left(z\right)\right)\right)\right)
Alternative assumptions:zC{0}andx is the generator of C[[x]]z \in \mathbb{C} \setminus \left\{0\right\} \,\mathbin{\operatorname{and}}\, x \text{ is the generator of } \mathbb{C}[[x]]
TeX:
\sqrt{z + x} = \sqrt{z} \sum_{k=0}^{\infty} \frac{{\left(-1\right)}^{k} \left(-\frac{1}{2}\right)_{k}}{{z}^{k} k !} {x}^{k}

z \in \mathbb{C} \setminus \left\{0\right\} \,\mathbin{\operatorname{and}}\, x \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \left(\left|x\right| < \left|z\right| \,\mathbin{\operatorname{and}}\, \left(\operatorname{Re}\!\left(z\right) > 0 \,\mathbin{\operatorname{or}}\, \operatorname{sgn}\!\left(\operatorname{Im}\!\left(x\right)\right) = \operatorname{sgn}\!\left(\operatorname{Im}\!\left(z\right)\right)\right)\right)

z \in \mathbb{C} \setminus \left\{0\right\} \,\mathbin{\operatorname{and}}\, x \text{ is the generator of } \mathbb{C}[[x]]
Definitions:
Fungrim symbol Notation Short description
Sqrtz\sqrt{z} Principal square root
Sumnf ⁣(n)\sum_{n} f\!\left(n\right) Sum
Powab{a}^{b} Power
RisingFactorial(z)k\left(z\right)_{k} Rising factorial
Factorialn!n ! Factorial
Infinity\infty Positive infinity
CCC\mathbb{C} Complex numbers
Absz\left|z\right| Absolute value
ReRe ⁣(z)\operatorname{Re}\!\left(z\right) Real part
Signsgn ⁣(z)\operatorname{sgn}\!\left(z\right) Sign function
ImIm ⁣(z)\operatorname{Im}\!\left(z\right) Imaginary part
FormalPowerSeriesK[[x]]K[[x]] Formal power series
Source code for this entry:
Entry(ID("b14da0"),
    Formula(Equal(Sqrt(Add(z, x)), Mul(Sqrt(z), Sum(Mul(Div(Mul(Pow(-1, k), RisingFactorial(Neg(Div(1, 2)), k)), Mul(Pow(z, k), Factorial(k))), Pow(x, k)), Tuple(k, 0, Infinity))))),
    Variables(z, x),
    Assumptions(And(Element(z, SetMinus(CC, Set(0))), Element(x, CC), And(Less(Abs(x), Abs(z)), Or(Greater(Re(z), 0), Equal(Sign(Im(x)), Sign(Im(z)))))), And(Element(z, SetMinus(CC, Set(0))), FormalGenerator(x, FormalPowerSeries(CC, x)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-08-21 11:44:15.926409 UTC