Fungrim home page

Fungrim entry: b07750

G2k ⁣(τ)=2ζ ⁣(2k)+2m=1nZ1(mτ+n)2kG_{2 k}\!\left(\tau\right) = 2 \zeta\!\left(2 k\right) + 2 \sum_{m=1}^{\infty} \sum_{n \in \mathbb{Z}} \frac{1}{{\left(m \tau + n\right)}^{2 k}}
Assumptions:kZ1  and  τHk \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
G_{2 k}\!\left(\tau\right) = 2 \zeta\!\left(2 k\right) + 2 \sum_{m=1}^{\infty} \sum_{n \in \mathbb{Z}} \frac{1}{{\left(m \tau + n\right)}^{2 k}}

k \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H}
Fungrim symbol Notation Short description
EisensteinGGk ⁣(τ)G_{k}\!\left(\tau\right) Eisenstein series
RiemannZetaζ ⁣(s)\zeta\!\left(s\right) Riemann zeta function
Sumnf(n)\sum_{n} f(n) Sum
Powab{a}^{b} Power
ZZZ\mathbb{Z} Integers
Infinity\infty Positive infinity
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
    Formula(Equal(EisensteinG(Mul(2, k), tau), Add(Mul(2, RiemannZeta(Mul(2, k))), Mul(2, Sum(Sum(Div(1, Pow(Add(Mul(m, tau), n), Mul(2, k))), ForElement(n, ZZ)), For(m, 1, Infinity)))))),
    Variables(k, tau),
    Assumptions(And(Element(k, ZZGreaterEqual(1)), Element(tau, HH))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-04-08 16:14:44.404316 UTC