Fungrim home page

Fungrim entry: ae3110

erfc(z)=ez2zπU ⁣(12,12,z2)\operatorname{erfc}(z) = \frac{{e}^{-{z}^{2}}}{z \sqrt{\pi}} U^{*}\!\left(\frac{1}{2}, \frac{1}{2}, {z}^{2}\right)
Assumptions:zCandRe(z)>0z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{Re}(z) > 0
\operatorname{erfc}(z) = \frac{{e}^{-{z}^{2}}}{z \sqrt{\pi}} U^{*}\!\left(\frac{1}{2}, \frac{1}{2}, {z}^{2}\right)

z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \operatorname{Re}(z) > 0
Fungrim symbol Notation Short description
Erfcerfc(z)\operatorname{erfc}(z) Complementary error function
Expez{e}^{z} Exponential function
Powab{a}^{b} Power
Sqrtz\sqrt{z} Principal square root
Piπ\pi The constant pi (3.14...)
HypergeometricUStarU ⁣(a,b,z)U^{*}\!\left(a, b, z\right) Scaled Tricomi confluent hypergeometric function
CCC\mathbb{C} Complex numbers
ReRe(z)\operatorname{Re}(z) Real part
Source code for this entry:
    Formula(Equal(Erfc(z), Mul(Div(Exp(Neg(Pow(z, 2))), Mul(z, Sqrt(Pi))), HypergeometricUStar(Div(1, 2), Div(1, 2), Pow(z, 2))))),
    Assumptions(And(Element(z, CC), Greater(Re(z), 0))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-12-30 15:00:46.909060 UTC