Fungrim home page

Fungrim entry: ad9ba2

E2k ⁣(i)=limτi[E2k ⁣(τ)]=1E_{2 k}\!\left(i \infty\right) = \lim_{\tau \to i \infty} \left[ E_{2 k}\!\left(\tau\right) \right] = 1
Assumptions:kZ1k \in \mathbb{Z}_{\ge 1}
E_{2 k}\!\left(i \infty\right) = \lim_{\tau \to i \infty} \left[ E_{2 k}\!\left(\tau\right) \right] = 1

k \in \mathbb{Z}_{\ge 1}
Fungrim symbol Notation Short description
EisensteinEEk ⁣(τ)E_{k}\!\left(\tau\right) Normalized Eisenstein series
ConstIii Imaginary unit
Infinity\infty Positive infinity
ComplexLimitlimzaf ⁣(z)\lim_{z \to a} f\!\left(z\right) Limiting value, complex variable
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
    Formula(Equal(EisensteinE(Mul(2, k), Mul(ConstI, Infinity)), ComplexLimit(EisensteinE(Mul(2, k), tau), tau, Mul(ConstI, Infinity)), 1)),
    Assumptions(And(Element(k, ZZGreaterEqual(1)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-08-17 11:32:46.829430 UTC