Fungrim home page

Fungrim entry: aca420

Poles ⁣(Wk ⁣(z),z,C{~})={}\operatorname{Poles}\!\left(W_{k}\!\left(z\right), z, \mathbb{C} \cup \left\{{\tilde \infty}\right\}\right) = \left\{\right\}
Assumptions:kZk \in \mathbb{Z}
TeX:
\operatorname{Poles}\!\left(W_{k}\!\left(z\right), z, \mathbb{C} \cup \left\{{\tilde \infty}\right\}\right) = \left\{\right\}

k \in \mathbb{Z}
Definitions:
Fungrim symbol Notation Short description
LambertWWk ⁣(z)W_{k}\!\left(z\right) Lambert W-function
CCC\mathbb{C} Complex numbers
UnsignedInfinity~{\tilde \infty} Unsigned infinity
ZZZ\mathbb{Z} Integers
Source code for this entry:
Entry(ID("aca420"),
    Formula(Equal(Poles(LambertW(k, z), z, Union(CC, Set(UnsignedInfinity))), Set())),
    Variables(k),
    Assumptions(Element(k, ZZ)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-09-16 21:17:18.797188 UTC