Fungrim home page

Fungrim entry: a3ab2a

limnlog ⁣(g ⁣(n))nlog ⁣(n)=1\lim_{n \to \infty} \frac{\log\!\left(g\!\left(n\right)\right)}{\sqrt{n \log\!\left(n\right)}} = 1
\lim_{n \to \infty} \frac{\log\!\left(g\!\left(n\right)\right)}{\sqrt{n \log\!\left(n\right)}} = 1
Fungrim symbol Notation Short description
SequenceLimitlimnaf ⁣(n)\lim_{n \to a} f\!\left(n\right) Limiting value of sequence
Loglog ⁣(z)\log\!\left(z\right) Natural logarithm
LandauGg ⁣(n)g\!\left(n\right) Landau's function
Sqrtz\sqrt{z} Principal square root
Infinity\infty Positive infinity
Source code for this entry:
    Formula(Equal(SequenceLimit(Div(Log(LandauG(n)), Sqrt(Mul(n, Log(n)))), n, Infinity), 1)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-08-17 11:32:46.829430 UTC