Fungrim home page

Fungrim entry: a2e6f9

π=n=1(3n1)ζ ⁣(n+1)4n\pi = \sum_{n=1}^{\infty} \frac{\left({3}^{n} - 1\right) \zeta\!\left(n + 1\right)}{{4}^{n}}
TeX:
\pi = \sum_{n=1}^{\infty} \frac{\left({3}^{n} - 1\right) \zeta\!\left(n + 1\right)}{{4}^{n}}
Definitions:
Fungrim symbol Notation Short description
Piπ\pi The constant pi (3.14...)
Sumnf(n)\sum_{n} f(n) Sum
Powab{a}^{b} Power
RiemannZetaζ ⁣(s)\zeta\!\left(s\right) Riemann zeta function
Infinity\infty Positive infinity
Source code for this entry:
Entry(ID("a2e6f9"),
    Formula(Equal(Pi, Sum(Div(Mul(Sub(Pow(3, n), 1), RiemannZeta(Add(n, 1))), Pow(4, n)), For(n, 1, Infinity)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-08-27 09:56:25.682319 UTC