Fungrim entry: a222ed

$\frac{d^{r}}{{d z}^{r}} \theta_{j}\!\left(z , \tau\right) = \theta^{(r)}_{j}\!\left(z , \tau\right)$
Assumptions:$j \in \left\{1, 2, 3, 4\right\} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H} \,\mathbin{\operatorname{and}}\, r \in \mathbb{Z}_{\ge 0}$
TeX:
\frac{d^{r}}{{d z}^{r}} \theta_{j}\!\left(z , \tau\right) = \theta^{(r)}_{j}\!\left(z , \tau\right)

j \in \left\{1, 2, 3, 4\right\} \,\mathbin{\operatorname{and}}\, z \in \mathbb{C} \,\mathbin{\operatorname{and}}\, \tau \in \mathbb{H} \,\mathbin{\operatorname{and}}\, r \in \mathbb{Z}_{\ge 0}
Definitions:
Fungrim symbol Notation Short description
ComplexDerivative$\frac{d}{d z}\, f\!\left(z\right)$ Complex derivative
JacobiTheta$\theta_{j}\!\left(z , \tau\right)$ Jacobi theta function
CC$\mathbb{C}$ Complex numbers
HH$\mathbb{H}$ Upper complex half-plane
ZZGreaterEqual$\mathbb{Z}_{\ge n}$ Integers greater than or equal to n
Source code for this entry:
Entry(ID("a222ed"),
Formula(Equal(ComplexDerivative(JacobiTheta(j, z, tau), For(z, z, r)), JacobiTheta(j, z, tau, r))),
Variables(j, z, tau, r),
Assumptions(And(Element(j, Set(1, 2, 3, 4)), Element(z, CC), Element(tau, HH), Element(r, ZZGreaterEqual(0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-01-31 18:09:28.494564 UTC