Fungrim home page

Fungrim entry: a1a3d4

η ⁣(τ+12)=eπi/24η3 ⁣(2τ)η ⁣(τ)η ⁣(4τ)\eta\!\left(\tau + \frac{1}{2}\right) = {e}^{\pi i / 24} \frac{\eta^{3}\!\left(2 \tau\right)}{\eta\!\left(\tau\right) \eta\!\left(4 \tau\right)}
Assumptions:τH\tau \in \mathbb{H}
\eta\!\left(\tau + \frac{1}{2}\right) = {e}^{\pi i / 24} \frac{\eta^{3}\!\left(2 \tau\right)}{\eta\!\left(\tau\right) \eta\!\left(4 \tau\right)}

\tau \in \mathbb{H}
Fungrim symbol Notation Short description
DedekindEtaη ⁣(τ)\eta\!\left(\tau\right) Dedekind eta function
Expez{e}^{z} Exponential function
ConstPiπ\pi The constant pi (3.14...)
ConstIii Imaginary unit
Powab{a}^{b} Power
HHH\mathbb{H} Upper complex half-plane
Source code for this entry:
    Formula(Equal(DedekindEta(Add(tau, Div(1, 2))), Mul(Exp(Div(Mul(ConstPi, ConstI), 24)), Div(Pow(DedekindEta(Mul(2, tau)), 3), Mul(DedekindEta(tau), DedekindEta(Mul(4, tau))))))),
    Assumptions(Element(tau, HH)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2019-08-19 14:38:23.809000 UTC