# Fungrim entry: 9d26d2

$\left\{ F_{n} : n \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, \sqrt{F_{n}} \in \mathbb{Z} \right\} = \left\{F_{0}, F_{1}, F_{2}, F_{12}\right\} = \left\{0, 1, 144\right\}$
TeX:
\left\{ F_{n} : n \in \mathbb{Z}_{\ge 0} \,\mathbin{\operatorname{and}}\, \sqrt{F_{n}} \in \mathbb{Z} \right\} = \left\{F_{0}, F_{1}, F_{2}, F_{12}\right\} = \left\{0, 1, 144\right\}
Definitions:
Fungrim symbol Notation Short description
Fibonacci$F_{n}$ Fibonacci number
ZZGreaterEqual$\mathbb{Z}_{\ge n}$ Integers greater than or equal to n
Sqrt$\sqrt{z}$ Principal square root
ZZ$\mathbb{Z}$ Integers
Source code for this entry:
Entry(ID("9d26d2"),
Formula(Equal(Set(Fibonacci(n), For(n), And(Element(n, ZZGreaterEqual(0)), Element(Sqrt(Fibonacci(n)), ZZ))), Set(Fibonacci(0), Fibonacci(1), Fibonacci(2), Fibonacci(12)), Set(0, 1, 144))))

## Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-01-31 18:09:28.494564 UTC