Fungrim home page

Fungrim entry: 9923b7

limN1log(N)n=1N1φ(n)=ζ ⁣(2)ζ ⁣(3)ζ ⁣(6)\lim_{N \to \infty} \frac{1}{\log(N)} \sum_{n=1}^{N} \frac{1}{\varphi(n)} = \frac{\zeta\!\left(2\right) \zeta\!\left(3\right)}{\zeta\!\left(6\right)}
\lim_{N \to \infty} \frac{1}{\log(N)} \sum_{n=1}^{N} \frac{1}{\varphi(n)} = \frac{\zeta\!\left(2\right) \zeta\!\left(3\right)}{\zeta\!\left(6\right)}
Fungrim symbol Notation Short description
SequenceLimitlimnaf(n)\lim_{n \to a} f(n) Limiting value of sequence
Loglog(z)\log(z) Natural logarithm
Sumnf(n)\sum_{n} f(n) Sum
Totientφ(n)\varphi(n) Euler totient function
Infinity\infty Positive infinity
RiemannZetaζ ⁣(s)\zeta\!\left(s\right) Riemann zeta function
Source code for this entry:
    Formula(Equal(SequenceLimit(Mul(Div(1, Log(N)), Sum(Div(1, Totient(n)), For(n, 1, N))), For(N, Infinity)), Div(Mul(RiemannZeta(2), RiemannZeta(3)), RiemannZeta(6)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-04-08 16:14:44.404316 UTC